library(ggplot2)
library(CoReAnalysis)
library(dplyr)
library(magrittr)
# F and chi-square distributions
df <- 5
range <- seq(from = 0.1, to = 0.9, by = 0.1)
x <- qchisq(range, df = df, ncp = 3)
y <- qf(range, df1 = df, df2 = Inf, ncp = 3) * df
rbind(x, y)
# Generating selected data
n <- 1000
df1 <- sample(c(2, 5, 10), n, TRUE)
df2 <- sample(c(10, 50, 200), n, TRUE)
pval_threshold <- 0.05
ncp <- pmax(rf(n, df1, df2), 0)
samp <- numeric(n)
for(i in 1:n) {
pval <- 1
while(pval > pval_threshold) {
x <- rf(1, df1[i], df2[i], ncp = ncp[i])
pval <- 1 - pf(x, df1[i], df2[i])
}
samp[i] <- x
}
# Estimating
naive <- mapply(f_conditional_ncp_mle, x = samp, df1 = df1, df2 = df2, threshold = 0)
conditional <- mapply(f_conditional_ncp_mle, x = samp, df1 = df1, df2 = df2,
pval_threshold = pval_threshold)
naive <- data.frame(x = samp, df1 = df1, df2 = df2, pval_threshold = pval_threshold,
estimate = naive, method = "naive")
conditional <- data.frame(x = samp, df1 = df1, df2 = df2, pval_threshold = pval_threshold,
estimate = conditional, method = "conditional")
forplot <- rbind(naive, conditional)
ggplot(forplot, aes(x = x, y = estimate, col = method)) +
geom_point() +
facet_grid(df1 ~ df2, labeller = "label_both", scales = "free") +
theme_bw() +
geom_abline(intercept = 0, slope = 1)
# Confidence intervals
naive <- mapply(f_conditional_ncp_ci, x = samp, df1 = df1, df2 = df2,
threshold = 0, confidence_level = 0.9)
conditional <- mapply(f_conditional_ncp_ci, x = samp, df1 = df1, df2 = df2,
pval_threshold = 0.05, confidence_level = 0.9)
naive_cover <- numeric(n)
conditional_cover <- numeric(n)
for(i in 1:n) {
naive_cover[i] <- naive[1, i] < ncp[i] & naive[2, i] > ncp[i]
conditional_cover[i] <- conditional[1, i] < ncp[i] & conditional[2, i] > ncp[i]
}
mean(naive_cover)
mean(conditional_cover)
naivedat <- data.frame(samp = samp,
df1 = df1, df2 = df2,
ncp = ncp,
cover = naive_cover,
lci = naive[1, ],
uci = naive[2, ],
method = "naive")
conddat <- data.frame(samp = samp,
df1 = df1, df2 = df2,
ncp = ncp,
cover = conditional_cover,
lci = conditional[1, ],
uci = conditional[2, ],
method = "conditional")
plotdat <- rbind(conddat, naivedat)
ggplot(plotdat) +
geom_segment(aes(y = lci, yend = uci, x = samp, xend = samp,
col = factor(cover))) +
theme_bw() +
facet_grid(method ~ df1 + df2, labeller = "label_both", scales = "free") +
ylab("CI") +
geom_hline(yintercept = 0) + geom_vline(xintercept = 0) +
geom_abline(slope = 1, intercept = 0, linetype = 2)
# Wrapper function -----
obs <- 11
x <- samp[obs]
obs_df1 <- df1[obs]
obs_df2 <- df2[obs]
pval_threshold <- 0.05
fit <- CoReAnalysis(x, test_statistic = "f", pval_threshold = 0.05,
df1 = obs_df1, df2 = obs_df2,
confidence_level = 0.95)
replication_power(fit, plot = TRUE)
replication_power(fit, plot = FALSE)
fit$threshold
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.